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Abstract

Complex relationships of high arity across modality and
context dimensions is a critical challenge in the Emotion
Recognition in Conversation (ERC) task. Yet, previous
works tend to encode multimodal and contextual relation-
ships in a loosely-coupled manner, which may harm re-
lationship modelling. Recently, Graph Neural Networks
(GNN) which show advantages in capturing data relations,
offer a new solution for ERC. However, existing GNN-based
ERC models fail to address some general limits of GNNs,
including assuming pairwise formulation and erasing high-
frequency signals, which may be trivial for many applica-
tions but crucial for the ERC task. In this paper, we pro-
pose a GNN-based model that explores multivariate rela-
tionships and captures the varying importance of emotion
discrepancy and commonality by valuing multi-frequency
signals. We empower GNNs to better capture the inherent
relationships among utterances and deliver more sufficient
multimodal and contextual modelling. Experimental results
show that our proposed method outperforms previous state-
of-the-art works on two popular multimodal ERC datasets.

1. Introduction
Human beings constantly express their feelings in ev-

eryday communication. Emotion Recognition in Conver-

sation (ERC) aims at enabling machines to detect interac-

tive human emotions in a dialogue, utilizing multi-sensory

data, including textual, visual and acoustic information

[5, 13, 18, 24]. Unlike traditional affective computing tasks

that are performed on single modalities (e.g., text, speech

or facial images) [12, 28, 32] or/and in non-conversational

∗Corresponding author: Jie Shao. This work is supported by the

National Natural Science Foundation of China (No. 61832001 and

No. 62276047), Natural Science Foundation of Sichuan Province (No.

2023NSFSC1972) and Science and Technology Program of Yibin Sanjiang

New Area (No. 2023SJXQYBKJJH001).

�3

�1

Oh what, you-you want 
both of them?

Rachel Karen Green, 
where's the other earring?!

Okay, okay, okay, look, 
just don't freak out, but I 

kinda lost it.

I know it's in the 
apartment, but I definitely 

lost it.

Well, what am I going to 
tell Monica? She wants to 

wear them tonight!

Anger

Fear

Neutral

Fear

�4

�2

�5

Dialogue Emotion

Surprise

Low voice

Soft voice

Loud voive

Flat tone

High pitch

T A V

pr
ed

ic
tio

n
pr

ed
ic

tio
n

Visual informationTextual information Acoustic information

Wait, Rach! Where's the 
other one?

Calm voice

�6

Neutral

Figure 1. An example of multimodal dialogue (left) and the com-

plex multivariate relationships of u3 and u6 (right).

scenario [15, 23, 33], there exists a distinct and essential

challenge in the ERC task - the complex multivariate re-

lationships among multiple modalities and conversational

context. In other words, the emotional dependencies of an

utterance are usually of high arity, and involve multi-source

information across both modality and context dimensions.

Figure 1 presents a sample of conversation between two

speakers. Take the utterance u3 as an example. The visual

and acoustic messages of utterance u3 (an expressionless

face and a flat tone) are ambiguous, but imply a veiled anger

if coupled with the text. Moreover, the emotion behind u3

is also related to the preceding context u1 and u2. In partic-

ular, the change from calling by nickname in u1 to calling

by full name in u3 suggests an emotion shift caused by u2,

since another speaker tries to make a joke with a pretended

lightness. Therefore, the relationships in {u1, u2, u3} are

complex and multivariate, and involve interdependencies

across both modality and context dimensions.
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Researchers have been exploring how to capture the

complex relationships more effectively. Among existing

ERC models, a dominant paradigm is to capture contextual

relationships with context-sensitive modules such as recur-

rent unit or transformer, whilst modelling multimodal re-

lationships through various fusion methods [4, 24, 25, 34].

Despite the advances, this paradigm tends to underrate mul-

tivariate relationships among modalities and context, as it

limits the natural interaction between loosely-coupled mul-

timodal and contextual modelling.

More recently, Graph Neural Networks (GNNs) have

shown great promise and yielded remarkable improvements

in ERC, by revealing rich expressive power of mining struc-

tural information and data relations [17, 18]. A routine so-

lution is to construct a heterogeneous graph where each

modality of an utterance is regarded as a node, and con-

nected with other modalities of the same utterance as well as

connected with the utterances in same modality in the same

dialogue. Carefully-tweaked edge-weighting strategies usu-

ally follow. On this basis, multimodal and contextual de-

pendencies among utterances can be modelled simultane-

ously through message passing, and thus deliver tighter en-

tanglement and richer interaction. Powerful as these GNN-

based methods are, they still suffer from two limitations:

i) Insufficient multivariate relationships. Conven-

tional GNNs assume pairwise relationships of ob-

jects of interest, and can only offer an approximation

of higher-order and multivariate relationships through

multiple pairs [1, 10]. However, degeneration of those

multivariate relationships into pairwise formulation

may harm the expressiveness [20,30]. Therefore, com-

plex multivariate relationships in ERC may not be suf-

ficiently modelled by previous GNN-based methods.

ii) Underestimated high-frequency information. It has

been shown that the propagation rule of GNNs (i.e., ag-

gregating and smoothing messages from neighbours) is

an analogy to a fixed low-pass filter [26, 31], and it is

mainly low-frequency messages that flow in the graph

while the effects of high-frequency ones are much

weakened. Moreover, Bo et al. [2] show that low-

frequency messages, which retain the commonality of

node features, perform better on assortative graphs (in

which the linked nodes tend to have similar features

and share the same label). In contrast, high-frequency

information that mirrors discrepancy and inconsistency

is more crucial on disassortative graphs. For ERC,

the constructed graphs are in general highly disassorta-

tive, where inconsistent emotional messages may exist

among modalities (say being sarcastic) or short-term

context. Hence, high-frequency information may pro-

vide crucial guidance, which is however badly ignored

by previous GNN-based ERC models, incurring bottle-

neck of performance improvement.

To address these issues, in this work we propose

Multivariate Multi-frequency Multimodal Graph Neural

Network (M3Net), which aims to capture more sufficient

multivariate relationships among modalities and context,

while benefiting from multi-frequency information within

the graph. At the core of M3Net are two parallel compo-

nents, multivariate propagation and multi-frequency propa-

gation. Concretely, we first construct a hypergraph neural

network with edge-dependent node weights [7] for multi-

variate propagation, in which each modality of an utterance

is represented as a node. We construct multimodal and con-

textual hyperedges, which can connect arbitrary number of

nodes, and thus can naturally encode relationships of higher

arity. Meanwhile, we model multi-frequency information

upon an undirected GNN, by adapting a set of frequency fil-

ters [2, 8] to distil different frequency constituents from the

node features. We adaptively integrate different frequency

signals to capture the varying importance of emotion dis-

crepancy and emotion commonality in the local neighbour-

hood, so as to achieve adaptive information sharing pattern.

The effectiveness of our work is further demonstrated by

extensive experimental studies on two popular multimodal

ERC datasets IEMOCAP [3] and MELD [27]. We show

that M3Net outperforms previous state-of-the-art methods.

2. Related work

2.1. Emotion recognition in conversation

Due to the great potential in interactive applications,

Emotion Recognition in Conversation (ERC) has attracted

great interests of many researchers. Various attempts have

been made to study multimodal and contextual relationships

in ERC. Some early works [13,14,24] focused more on con-

textual dependencies and conducted simple feature concate-

nation to perform multimodal modelling. To enhance the in-

terrelation between modalities and context, recent methods

introduced more advanced schemes such as positional at-

tention [34] and adaptive computation [5]. However, these

methods still encode multimodal and contextual relation-

ships in a loosely-coupled manner, which may result in

weak interaction between them. More recently, some re-

searchers formulated the ERC task upon GNNs, which are

powerful in mining data relations hence exhibit superior

capability to model contextual and multimodal dependen-

cies [17, 18]. Nevertheless, these GNN-based models still

deliver insufficient multivariate relationships and underrate

high-frequency signals, as we discussed.

In this work, we propose a new approach that enhances

multivariate information among modalities and context,

whilst capturing the varying importance of emotion discrep-

ancy and emotion commonality, to deliver more sufficient

multimodal and contextual modelling.

10762

Authorized licensed use limited to: Tsinghua University. Downloaded on September 13,2023 at 02:51:36 UTC from IEEE Xplore.  Restrictions apply. 



ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�
33
��

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

� 33
���

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

�

ℎ1
� ℎ2

� ℎ3
�

ℎ1
� ℎ2

� ℎ3
� ℎ1

� ℎ2
� ℎ3

��

ℎℎ11
�� ℎℎ22

�� ℎℎ33
��

ℎℎ11
�� ℎℎ22

�� ℎℎ33
�� ℎℎ11

�� ℎℎ22
�� ℎℎ33

����

�1
� �2

� �3
�

�3
��2

��1
��1

� �2
� �3

�

�1
� �2

� �3
��3

��2
��1

�

�1
� �2

� �3
�

low high

�3
� �1

�

�2
�

�1
�

�1
�

e1
e2
e3

en

�1
�4

�1
�

�1
�

�1
� �1

�

�2
��3

�

�3
�

�2
�

�1
�

�1
�

e1
e2
e3

en

�1
�4

�1
�

�1
�

�1
� �1

�

�2
��3

�

�3
�

�2
�

�1
�

�1
�

�̅

�

�̅

�

�̅

�

�̅

�

�̅

�

�̅

�

C
la

ss
ifi

er

Multivariate Propagation

Multi-frequency Propagation
Embedding

Speaker
Embedding

��


Modality Encoding Emotion Classifier

Hypergraph Conv

�1
�

�2
�

�3
�

�3
�

�2
�

�1
�

�1
�

�2
�

�3
� ℎ3

�

ℎ2
�

ℎ1
�

ℎ1
�

ℎ2
�

ℎ3
�

ℎ3
�

ℎ2
�

ℎ1
�

FC

GRU

GRU

GRU

FC

�1
�

�2
�

�3
�

�3
�

�2
�

�1
�

�1
�

�2
�

�3
� ℎ3

�

ℎ2
�

ℎ1
�

ℎ1
�

ℎ2
�

ℎ3
�

ℎ3
�

ℎ2
�

ℎ1
�

FC

GRU

GRU

GRU

FC

Notations:
Visual modalityTextual modality Acoustic modality Concatenation

Notations:
Visual modalityTextual modality Acoustic modality Concatenation

Figure 2. Detailed architecture of the proposed M3Net.

2.2. Graph neural networks

Graph Neural Networks (GNNs) have a distinct advan-

tage in modelling data relationships, and have been widely

employed in various applications such as recommendation

[16] and action recognition [6]. GNNs have also inspired

ERC researchers and offer a new solution for the ERC

task, from unimodal setting [12,28] to multimodal scenario

[17, 18]. However, previous works fail to address the gen-

eral limits of GNNs, including conducting pairwise formu-

lation and erasing high-frequency information, which mo-

tivates our work. We present a GNN-based model that en-

codes relationships of higher arity and values different fre-

quency signals in the neighbourhood. We empower GNNs

to better capture the inherent relations among utterances and

boost up the performance.

3. Methodology

In a nutshell, an ERC model aims to detect the

emotion state of each utterance in a dialogue. For-

mally, a dialogue contains a sequence of N utterances

{(u1, p1), (u2, p2), ..., (uN , pN )}, where each utterance ui,

spoken by speaker pi, consists of multi-sensory data, in-

cluding textual (ut
i), visual (uv

i ) and acoustic (ua
i ) modal-

ities. The goal is to predict the emotion category of each

constituent utterance ui from a predefined set of C classes.

Figure 2 shows the architecture of the proposed M3Net.

In general, M3Net contains four components: modality en-

coding, multivariate propagation, multi-frequency propaga-

tion, and an emotion classifier.

3.1. Modality encoding

A conversation is sequential in nature and consists of

multiple speakers. Therefore, we firstly process unimodal

utterances with speaker and context information, to ob-

tain speaker- and context-aware unimodal representations.

Specifically, we denote each speaker with a one-hot vector

si and maintain a lookup table for M speakers to calculate

the speaker embedding Si at the i-th conversation turn:

Si = Wssi, (1)

in which Si ∈ R
Dh and Ws is trainable weight. In addition,

we employ a bidirectional Gated Recurrent Unit (GRU)

to encode the conversational textual features. We empiri-

cally observe that encoding visual and acoustic modalities

with recurrent modules has no positive effect on the perfor-

mance, hence use two one-hidden-layer multilayer percep-

trons W1 and W2 to encode acoustic and visual modalities

respectively. Mathematically,

cti =
←−−→
GRU(ut

i, c
t
i(+,−)1),

cai = W1u
a
i + bai ,

cvi = W2u
v
i + bvi ,

(2)

in which cti, c
a
i , c

v
i ∈ R

Dh . We then add speaker embedding

to obtain speaker- and context-aware unimodal representa-

tions {ht
i, h

a
i , h

v
i } at the i-th conversation turn:

hx
i = cxi + Si, x ∈ {t, a, v}. (3)
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3.2. Multivariate propagation

The main idea of the multivariate propagation module

is to explore the multivariate and high-order information

among multiple modalities and conversational context. We

begin by constructing a hypergraph H with edge-dependent

node weights, from the sequentially encoded utterances.

3.2.1 Graph construction

Generally, given a sequence of utterances with N conversa-

tion turns, we construct a hypergraph H = (VH, EH, ω, γ),
in which each node v ∈ VH (|VH| = 3N) corresponds to a

unimodal utterance, and every hyperedge e ∈ EH (|EH| =
3+N) encodes multimodal or contextual dependencies. A

weight ω(e) is assigned for every hyperedge e ∈ EH, and a

weight γe(v) for every hyperedge e ∈ EH and every node v
incident to e. Let H ∈ R

|VH|×|EH| represent the incidence

matrix, in which a nonzero entry Hve = 1 indicates that the

hyperedge e is incident with the node v; otherwise Hve = 0.

Nodes: Each modality of an utterance is represented as a

node in hypergraph, i.e., vti for the textual modality, vai for

the acoustic modality and vvi for the visual modality. We

initialize the node embeddings {vti , vai , vvi } with the sequen-

tially encoded representations {ht
i, h

a
i , h

v
i } respectively.

Hyperedges: The design of hyperedges is based on the

assumption that the emotion behind an utterance in a di-

alogue is mainly determined by the joint effect of multi-

ple modalities and conversational context, and multivariate

relationships may exist across both dimensions. To fully

investigate the complex multivariate relationships, we con-

struct multimodal hyperedges and contextual hyperedges

for each node. Concretely, as shown in Figure 2, each node

vxi (x ∈ {t, a, v}) is firstly connected to all other utter-

ances in the same modality in the same dialogue {vxj |j ∈
[1, N ], j �= i}, with one contextual hyperedge. Moreover,

each node vxi is connected to other modalities of the same

utterances {vzi |z ∈ {t, a, v}, z �= x}, with one multimodal

hyperedge. In this fashion, the constructed hypergraph is

able to capture high-order and multivariate messages that

are beyond pairwise formulation.

Weights: Unlike previous GNN-based ERC models

[12, 18] which manually tweak the edge weighting strate-

gies with complicated relation learning or similarity met-

rics, we use randomly initialized weight values to avoid

complicating our model. Specifically, we define two types

of weights in the hypergraph: i) an edge weight ω(e) for ev-

ery hyperedge e, and ii) a node weight γe(v) for every hy-

peredge e incident to v, a.k.a., edge-dependent node weight

[7]. Intuitively, γe(v) measures the contribution of node

v to hyperedge e, and thus reinforces fine-grained multi-

modal and contextual dependencies. Edge-dependent node

weights can thus be represented by a weighted incidence

matrix Ĥ ∈ R
|VH|×|EH|:

Ĥ =

{
γe(v), if hyperedge e is incident with node v;

0, otherwise.
(4)

3.2.2 Neighbour aggregation

We reformulate hypergraph convolution operation [1] to

propagate multivariate embeddings. We also remove feature

transformation at each iteration as it is observed to be of lit-

tle benefit. Specifically, we first conduct node convolution

by aggregating node features to update hyperedge embed-

dings, and then conduct hyperedge convolution to spread

the hyperedge messages to the nodes. Mathematically,

V(l+1) = σ(D−1
H HWeB

−1Ĥ�V(l)), (5)

in which V(l) = {vxi,(l)|i ∈ [1, N ], x ∈ {t, a, v}} ∈
R
|VH|×Dh is the input at layer l. σ is a non-linear activation

function. We = diag(w(e1), ..., w(e|EH|)) is the hyperedge

weight matrix. DH ∈ R
|VH|×|VH| and B ∈ R

|EH|×|EH| are

the node degree matrix and hyperedge degree matrix, re-

spectively. By this means, the high-order multimodal and

contextual relationships are gradually refined. After L iter-

ations, we get the outputs of the last iteration vxi,(L) as the

multivariate representations:

vti = vti,(L), v
a
i = vai,(L), v

v
i = vvi,(L). (6)

3.3. Multi-frequency propagation

The above multivariate propagation module is able to

capture high-order dependencies that are beyond pairwise,

but it still follows the generic graph learning protocol which

aggregates and smooths signals from the local neighbour-

hood. This can be interpreted as a form of low-pass fil-

ter and the smoothness of messages is basically spreading

low-frequency information whilst erasing high-frequency

information [2,26,31]. However, as discussed earlier, high-

frequency information that mirrors emotion discrepancy of

nodes may be crucial for ERC, and combining the power

of messages with varying frequencies is worth exploring. It

thus motivates us to propose a multi-frequency propagation

module to distil different frequency constituents with vary-

ing importance. For this purpose, we further construct an

undirected graph G = (VG , EG) from the sequentially en-

coded utterances, in parallel with the multivariate module.

3.3.1 Graph construction

We construct an undirected graph G = (VG , EG) whose

nodes VG are identical to the ones in H, denoted with

{f t
i , f

a
i , f

v
i }. The node embeddings at the first iteration

are initialized with the sequentially encoded representations

{ht
i, h

a
i , h

v
i } as well. Different from H, we construct a
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set of edges EG with pairwise connections. Similarly, we

connect each node fx
i to all other utterances in the same

modality in the same dialogue {fx
j |j ∈ [1, N ], j �= i}, as

well as to other modalities of the same utterances {fz
i |z ∈

{t, a, v}, z �= x}. The constructed graph G is shown in

Figure 2, with adjacency matrix A ∈ R
|VG |×|VG |. The

normalized graph Laplacian matrix can be represented as

L = I − D
−1/2
G AD

−1/2
G , where DG ∈ R

|VG |×|VG | is a

diagonal degree matrix and I is an identity matrix.

3.3.2 Multi-frequency filtering

We first design a low-pass filter Fl and a high-pass filter Fh

to distil the signals from the node features:

Fl = I+D
−1/2
G AD

−1/2
G = 2I− L,

Fh = I−D
−1/2
G AD

−1/2
G = L.

(7)

It can be noticed that the high-pass filter is equivalent to

the normalized graph Laplacian matrix, which is consistent

with the theory in image signal processing that the Lapla-

cian kernel can be employed to highlight high-frequency

edge information. According to theory of graph Fourier

transform [2, 29], given a signal ϕ, the filtering operation

by Fl and Fh can be regarded as the convolutional ∗C be-

tween ϕ and corresponding convolutional kernels:

Fl ∗C ϕ = Fl · ϕ, Fh ∗C ϕ = Fh · ϕ. (8)

3.3.3 Graph learning

After obtaining low-pass and high-pass filters, we leverage

the filters to adaptively aggregate messages with varying

frequencies. Specifically, we use a weighted sum to com-

bine low-frequency and high-frequency messages:

F(k+1) = Rl(Fl · F(k)) +Rh(Fh · F(k))

= F(k) + (Rl −Rh)D
−1/2
G AD

−1/2
G F(k),

(9)

in which F(k) = {fx
i,(k)|i ∈ [1, N ], x ∈ {t, a, v}} ∈

R
|VG |×Dh is the input at layer k. Rl,Rh ∈ R

|VG |×|VG | are

the weight matrices for low-frequency and high-frequency

information, respectively. Eq. (9) can be written in another

form as

fi,(k+1) = fi,(k) +
∑
j∈Ni

rlij − rhij√|Nj |
√|Ni|

fj,(k), (10)

where Ni is the neighbouring nodes of node i. rlij and

rhij are the weight contributions of node j’s low-frequency

and high-frequency signals to node i, respectively, and they

meet the constraint rlij + rhij = 1.

To effectively learn the coefficient rlij − rhij in Eq. (10),

we follow FAGCN [2] to employ a self-gating mechanism,

which considers the correlation between the central node

and neighbours:

rlij − rhij = tanh(W3(fi,(k) ⊕ fj,(k))). (11)

Here, ⊕ is the concatenation operation and W3 ∈ R
2Dh×1

is a trainable weight matrix. tanh(·) is the hyperbolic tan-

gent function that scales the value in [−1, 1]. By this means,

the coefficient rlij − rhij can readily model the varying im-

portance of different frequency constituents. For instance,

if rlij − rhij < 0, the high-frequency messages dominate,

and node i receives the discrepancy between node i and the

neighbour j (i.e., fi,(k) − fj,(k)); and it holds vice versa.

Now we gradually spread the multi-frequency informa-

tion over the graph. By stacking K layers, each node re-

ceives the multi-frequency signals from K-hop neighbours,

and we use outputs of the final layer as the multi-frequency

representations:

f t
i = f t

i,(K), f
a
i = fa

i,(K), f
v
i = fv

i,(K). (12)

3.3.4 Differences with FAGCN

The graph learning rule of the above multi-frequency mod-

ule is closely related to Frequency Adaptation Graph Con-

volutional Networks (FAGCN) [2], which proposes to adap-

tively integrate low-frequency and high-frequency signals

as well. Although we derive inspiration from FAGCN, our

multi-frequency module contains several critical distinc-

tions: (i) FAGCN introduces a hyper-parameter to balance

the identity matrix and Laplacian matrix when defining fil-

ters while our method is hyper-parameter free; (ii) FAGCN

always updates node embeddings based on the inputs at

first layer, while we gradually refine the node embeddings

based on the outputs of previous layer. We present the per-

formance comparison between our multi-frequency module

and FAGCN in Section 5.5 and show by extensive experi-

ments that our design outperforms FAGCN.

3.4. Emotion classification

The emotion classifier takes as input the concatenated

multivariate and multi-frequency representations to perform

emotion prediction. Mathematically,

ei = vti ⊕ f t
i ⊕ vai ⊕ fa

i ⊕ vvi ⊕ fv
i , (13)

where ei is the emotion representation for utterance i,
and contains both multivariate dependencies and multi-

frequency information. Finally, we feed ei into a softmax

layer to obtain the emotion category:

ẽi = ReLU(ei),

Pi = softmax(W4ẽi + b4),

ŷi = argmax
τ

(Pi[τ ]),
(14)
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where W4 is trainable weight, Pi ∈ R
C and ŷi is the pre-

dicted label for utterance ui.

3.5. Training objective

We follow prior works [18, 24] to use categorical cross-

entropy along with L2-regularization as the loss function:

L = − 1∑Num
s=1 c(s)

Num∑
i=1

c(i)∑
j=1

logPi,j [yi,j ] + λ ‖θ‖2 , (15)

where Num is the number of dialogues, c(i) is the number

of utterances in dialogue i, Pi,j and yi,j are the probabilistic

distribution of class labels and the ground-truth label for ut-

terance j in dialogue i, respectively. λ is the L2-regularizer

weight and θ denotes the trainable parameters in the model.

4. Experiments
4.1. Datasets

We compare the performance of our proposed M3Net

against prior works on two popular multimodal datasets,

IEMOCAP [3] and MELD [27], following dominant data

split protocol and modality employment as in previous

works [5, 17, 18].

IEMOCAP contains 151 dyadic dialogues of ten speak-

ers and 7,433 utterances labelled with one of six emotion

categories: happy, sad, neutral, angry, excited, or frustrated.

We use 120 dialogues with 5,810 utterances for training and

validation, and the rest for testing. We employ language,

video and audio modalities for emotion prediction.

MELD is a multiparty emotional conversational dataset

which is collected from the TV show Friends. MELD con-

tains 1,433 rounds of conversations and 13,708 utterances.

Each utterance is annotated as one of seven emotion labels:

anger, disgust, sadness, joy, surprise, fear, or neutral. We

use 1,039 dialogues with 9,989 utterances for training, 114

dialogues with 1,109 utterances for validation, and the rest

for testing. We follow previous works [17, 18] to employ

language, video and audio modalities.

4.2. Unimodal feature extraction

In this paper, we use pre-extracted unimodal features fol-

lowing identical settings in previous studies [5, 11, 24].

The textual features are extracted using the RoBERTa

Large model [22], which is firstly fine-tuned for emotion

prediction from the transcript of conversations. After the

fine-tuning process, the utterances are fed to the model and

the activations from the final four layers are extracted as

four textual vectors, which are then normalized and aver-

aged for the final textual representation. The dimension of

textual features in our paper is 1024.

The acoustic features are obtained by the openSMILE

toolkit [9]. The visual features are extracted with a pre-

trained DenseNet [19] for the MELD dataset, and through a

Dataset Batch Optimizer Dh L K Dropout

IEMOCAP 16 Adam (lr=1e-4) 512 3 4 0.5

MELD 16 Adam (lr=1e-4) 512 3 3 0.4

Table 1. Details of hyper-parameters in our experiments.

3D-CNN for the IEMOCAP dataset. More details are stated

in appendix.

4.3. Baselines

For a comprehensive evaluation of M3Net, we compare

our model with the following state-of-the-art methods:

• CMN [14] seeks to model contextual information from

dialogue history. It uses two GRUs for two speakers

and stores contexts as memories. It is not applicable to

multiparty scenarios, hence no results on MELD.

• ICON [13] is an extension of CMN, which connects

outputs from speaker GRUs in CMN with another

GRU, so as to explicitly model inter-speaker interac-

tion. Similar to CMN, ICON is not applicable to mul-

tiparty scenarios, hence no results on MELD.

• DialogueRNN [24] employs three GRU cells to re-

spectively keep track of global context, speaker state

and emotion state throughout the conversation. It is

capable of handling multiparty conversations.

• MetaDrop [5] introduces a binary maintain-or-drop

decision learning mechanism to learn adaptive fusion

paths, as well as simultaneously capture multimodal

and contextual relations.

• DialogueGCN [12] uses graph relational modelling to

encode context. Each utterance is represented as a

node, and connected with other nodes in the same dia-

logue within a context window. It originally focuses on

textual modality and we extend it to multimodal sce-

nario by concatenating the unimodal embeddings.

• MMGCN [18] constructs a heterogeneous graph by

regarding each modality of each utterance as a node. It

designs separate edge weighting mechanisms for inter-

modal and intra-modal edges, and encodes both multi-

modal and contextual information with deep layers.

• MM-DFN [17] proposes a graph-based dynamic fu-

sion module to keep track of conversational context in

different semantic spaces, and enhance complementar-

ity between modalities.

4.4. Settings and evaluation metrics

The proposed model is implemented using PyTorch and

torch-geometric packages. The networks are trained on a

machine with 1 NVIDIA GeForce RTX 3090. We follow

dominant evaluation protocols to use accuracy and F1-score

as the metrics to measure the performance. Paired t-test is

performed to test the significance of performance improve-

ment with a default significance level of 0.05. Models are
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Methods Network
IEMOCAP Average (w) MELD Average (w)
Accuracy F1 Accuracy F1

G
lo

V
e

CMN� [14] Non-GNN - 58.50 - -

ICON∗ [13] Non-GNN 64.00 63.50 - -

DialogueRNN† [24] Non-GNN 63.51 62.90 59.92 57.60

MetaDrop♦ [5] Non-GNN 65.76 65.58 - 58.30

DialogueGCN† [12] GNN-based 66.17 66.24 57.01 55.59

MMGCN† [18] GNN-based 65.80 65.41 60.42 58.31

MM-DFN† [17] GNN-based 68.21 68.18 59.81 58.42

M3Net (ours) GNN-based 69.50 69.08 61.65 59.22

R
o
B

E
R

T
a DialogueGCN† [12] GNN-based 63.96 64.44 63.49 62.78

MMGCN† [18] GNN-based 66.79 66.99 66.63 65.13

DialogueRNN♦ [24] Non-GNN 68.64 68.72 65.94 65.31

MetaDrop♦ [5] Non-GNN 69.38 69.59 66.63 66.30

MM-DFN† [17] GNN-based 69.87 69.48 67.01 66.17

M3Net (ours) GNN-based 72.46 72.49 68.28 67.05

Table 2. Comparison with previous state-of-the-art methods on IEMOCAP and MELD. Bold font denotes the best performances. Aver-

age(w) = weighted average. � from [24]; ∗ from [13]; ♦ from [5]; † from our reimplementation using open source codes.

trained using Adam [21] with a batch size of 16 on both

datasets. We test L and K in the range from 1 to 7 and

present the best-performing results. Full details of hyper-

parameters for both datasets are shown in Table 1. Code

is available at https://github.com/feiyuchen7/
M3NET.

5. Results and analysis
5.1. Comparison with state-of-the-arts

We contrast our model with a wide range of state-of-

the-art methods in Table 2. It can be seen that on both

datasets, our proposed M3Net surpasses previous methods

and achieves new state-of-the-art records in terms of both

metrics of accuracy and F1-score. In particular, M3Net

outperforms previous GNN-based methods, including Di-

alogueGCN, MMGCN and MM-DFN, which manually

tweak edge weighting strategies with complicated relation

learning or similarity metrics, to capture multimodal and

contextual relationships. We suggest that the advantage of

our method is due to the investigation into multivariate and

multi-frequency information among modalities and context,

which is neglected by previous methods.

5.2. Textual features from BERT vs. GloVe

As stated in Section 4.2, in this work the inputting textual

features are extracted from a pre-trained RoBERTa Large

model, which according to our observation, can boost up the

performance compared with traditional GloVe-based textual

features. In order to verify whether our model can deliver

good performance regardless of the sources of textual fea-

tures, we further conduct experiments using GloVe embed-

dings and present comparison with previous methods. The

results are shown in Table 2. It can be observed that M3Net

Methods
IEMOCAP MELD
Acc. F1 Acc. F1

M3Net 72.46 72.49 68.28 67.05

1 w/o multivariate info. 70.06 70.05 67.74 66.36

2 w/o multi-frequency info. 69.87 69.74 67.36 66.03

3 w/o hyperedge weight ω(e) 70.30 70.45 68.11 66.99

4 w/o node weight γe(v) 70.98 71.02 68.05 66.92

5 w/o both weights 70.12 70.09 67.89 66.75

6 H → G in series 68.39 68.44 68.20 66.84

7 G → H in series 69.50 69.70 68.05 66.85

Table 3. Ablation studies of M3Net.

outperforms other baselines based on either textual feature

source, through which we can infer that our multivariate and

multi-frequency modelling delivers major improvements.

5.3. Ablation studies

To gain better insights to the constituents of our model,

we perform ablation studies on the key components of

M3Net and present results in Table 3.

Effect of multivariate information. We first explore

the effect of multivariate information among modalities and

context. To achieve this, we remove the multivariate propa-

gation module (i.e., the hypergraph H) and perform clas-

sification based on multi-frequency representations only,

shown as variant 1 in Table 3. Under this setting, we can

observe a decrease of 2.40% in accuracy and 2.44% in F1-

score on IEMOCAP, as well as a decrease of 0.54% in accu-

racy and 0.69% in F1-score on MELD. This demonstrates

the effectiveness of introducing multivariate propagation,

which can naturally encode relationships of higher arity.

Effect of multi-frequency information. Another core

component of M3Net is the multi-frequency propagation

module. Similarly, we test the importance of this module by
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(a) Effect of L on IEMOCAP (b) Effect of K on IEMOCAP (c) Effect of L on MELD (d) Effect of K on MELD
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Figure 3. Results of M3Net at different graph layers. In (a) and (c), effects of L are tested by fixing K as in the best-performing models.

In (b) and (d), effects of K are tested by fixing L as in the best-performing models.

having it removed and performing predictions using multi-

variate representations only. Variant 2 reports the results

of this configuration, from which a sharp degradation of

performance can be observed. This stands as a convincing

proof of the validity of introducing different frequency in-

formation into ERC, which can guide the model to capture

the varying importance of emotion discrepancy and emotion

commonality in the local neighbourhood.

Effect of weights in the hypergraph. In Section 3.2.1,

we define two types of weights in hypergraph H to capture

the multivariate relationships in a fine-grained level. We

hence conduct experiments to verify the effect of these two

weights. It can be seen from variants 3 to 5 that removing

either or both weights (i.e., setting weight value ω(e) or/and

γe(v) as 1) harms the performance on both datasets. This

indicates that the formulated weights benefit the training.

Effect of parallel modelling. In M3Net, we propa-

gate multivariate and multi-frequency information in par-

allel. We further conduct experiments to compare it with

two-step serial modelling and show the results as variants

6 and 7. Serial modelling slightly reduces the performance

on MELD but leads to dramatic decreases on IEMOCAP,

which implies the effectiveness of the parallel modelling.

5.4. Discussions on graph layers

M3Net contains two parallel graphs, and the graph prop-

agation plays a pivotal role. To investigate the impact of

stacking different graph layers, we conduct a grid search on

the number of layers. Specifically, we search the layer num-

bers of multivariate propagation (L) and multi-frequency

propagation (K) in the range from 1 to 7 and summarize

the results in Figure 3. On IEMOCAP, the effects of L and

K are similar. At first, the results steadily improve as stack-

ing more layers, and peak at L = 3 and K = 4 respectively.

Further stacking more layers has little positive impact on the

performance. On the other hand, it can be noticed that the

results on MELD are less sensitive to the number of graph

layers, with no special pattern, as shallow or deep layers can

all yield decent performance.
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Figure 4. Performance comparison with FAGCN.

5.5. Comparison with FAGCN

As stated in Section 3.3.4, the graph propagation rule of

our multi-frequency module is closely related to FAGCN

[2] but retains critical distinctions. To further demonstrate

the effectiveness of our method, we present an additional

comparison with FAGCN. Specifically, we maintain the

multivariate module, and replace our multi-frequency mod-

elling strategy (Eq. (7) to Eq. (11)) with the one introduced

in FAGCN. Since FAGCN introduces a hyper-parameter

ε ∈ [0, 1] when defining filters, we test ε in the range of

[0, 1] with a step of 0.1. The comparison is summarized in

Figure 4. Apparently, ε is a vital factor and dramatically im-

pacts the performance, especially on IEMOCAP. However,

under no circumstances can these variants with FAGCN out-

perform the original M3Net. This indicates the superiority

of our multi-frequency modelling mechanism.

6. Conclusion

This paper proposes a GNN-based model to address the

ERC problem. We present Multivariate Multi-frequency

Multimodal Graph Neural Network (M3Net) to investigate

the multivariate relationships among modalities and con-

text, and take full advantage of different frequency infor-

mation which reflects emotion discrepancy and commonal-

ity. Extensive experimental results on two datasets show the

superiority of our model.
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